On the Kiefer-Wolfowitz approximation method

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm

A stochastic algorithm for the recursive approximation of the location θ of a maximum of a regression function has been introduced by Kiefer and Wolfowitz (1952) in the univariate framework, and by Blum (1954) in the multivariate case. The aim of this paper is to provide a companion algorithm to the Kiefer-Wolfowitz-Blum algorithm, which allows to simultaneously recursively approximate the size...

متن کامل

A Kiefer - Wolfowitz Theorem for Convex Densities

Kiefer and Wolfowitz [14] showed that if F is a strictly curved concave distribution function (corresponding to a strictly monotone density f), then the Maximum Likelihood Estimator F̂n, which is, in fact, the least concave majorant of the empirical distribution function Fn, differs from the empirical distribution function in the uniform norm by no more than a constant times (n logn)2/3 almost s...

متن کامل

A Kiefer-Wolfowitz algorithm with randomized differences

A Kiefer–Wolfowitz or simultaneous perturbation algorithm that uses either one-sided or two-sided randomized differences and truncations at randomly varying bounds is given in this paper. At each iteration of the algorithm only two observations are required in contrast to 2` observations, where ` is the dimension, in the classical algorithm. The algorithm given here is shown to be convergent un...

متن کامل

General Bounds and Finite-Time Improvement for the Kiefer-Wolfowitz Stochastic Approximation Algorithm

We consider the Kiefer-Wolfowitz (KW) stochastic approximation algorithm and derive general upper bounds on its meansquared error. The bounds are established using an elementary induction argument and phrased directly in the terms of tuning sequences of the algorithm. From this we deduce the nonnecessity of one of the main assumptions imposed on the tuning sequences by Kiefer and Wolfowitz [Kie...

متن کامل

DVORETZKY–KIEFER–WOLFOWITZ INEQUALITIES FOR THE TWO-SAMPLE CASE Citation

The Dvoretzky–Kiefer–Wolfowitz (DKW) inequality says that if Fn is an empirical distribution function for variables i.i.d. with a distribution function F , and Kn is the Kolmogorov statistic √ n supx |(Fn − F )(x)|, then there is a finite constant C such that for any M > 0, Pr(Kn > M) ≤ C exp(−2M2). Massart proved that one can take C = 2 (DKWM inequality) which is sharp for F continuous. We con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1957

ISSN: 0528-2195

DOI: 10.21136/cpm.1957.117235